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We report on theoretical and experimental studies describing the buoyancy-driven ascent
of a Taylor long drop in a circular vertical pipe where the descending fluid is Newtonian,
and the ascending fluid is non-Newtonian yield shear thinning and described by the
three-parameter Herschel–Bulkley model, including the Ostwald–de Waele model as a
special case for zero yield. Results for the Ellis model are included to provide a more
realistic description of purely shear-thinning behaviour. In all cases, lubrication theory
allows us to obtain the velocity profiles and the corresponding integral variables in closed
form, for lock-exchange flow with a zero net flow rate. The energy balance allows us to
derive the asymptotic radius of the inner current, corresponding to a stable node of the
differential equation describing the time evolution of the core radius. We carried out a
series of experiments measuring the rheological properties of the fluids, the speed and
the radius of the ascending long drop. For some tests, we measured the velocity profile
with the ultrasound velocimetry technique. The measured radius of the ascending current
compares fairly well with the asymptotic radius as derived through the energy balance,
and the measured ascent speed shows a good agreement with the theoretical model. The
measured velocity profiles also agree with their theoretical counterparts. We have also
developed dynamic similarity conditions to establish whether laboratory physical models,
limited by the availability of real fluids with defined rheological characteristics, can be
representative of real phenomena on a large scale, such as exchanges in volcanic conduits.
Appendix B contains scaling rules for the approximated dynamic similarity of the physical
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process analysed; these rules serve as a guide for the design of experiments reproducing
real phenomena.

Key words: gravity currents, lubrication theory, non-Newtonian flows

1. Introduction

Gravity flow of elongated drops in circular vertical pipes is frequent in both industrial
processes and natural systems. The early contribution by Beirute & Flumerfelt (1977)
analysed the laminar displacement of drilling muds in a pipe due to the pumping of
cement slurry, modelling both fluids as non-Newtonian with yield stress. The analytical
approach focused on the most favourable conditions for effective mud displacement during
cementing, and a detailed analysis of the role of several important variables was performed
in achieving the objective. Subsequent analyses were devoted to the buoyancy driven
exchange flows of two Bingham fluids in a cylindrical inclined duct, where viscoplastic and
buoyancy forces almost balance one another (Frigaard & Scherzer 1998, 2000; Bittleston,
Ferguson & Frigaard 2002; Pelipenko & Frigaard 2004a), in most cases in the presence
of an annulus gap unwrapped in a Hele-Shaw cell of varying gap. It is noteworthy that
Frigaard & Scherzer (1998) presented, alongside a discussion of an engineering problem,
a detailed analysis of the deviatoric stress in the unyielded region. In this same flow
field geometry, interface instabilities and travelling wave solutions were also analysed; see
Pelipenko & Frigaard (2004b), who derived the stability/instability conditions of the front
during displacement on the basis of rigorous Navier–Stokes equations and well-defined
scaling arguments. In addition to the theoretical studies, numerous experiments have been
carried out to measure the distribution of velocity and concentration in gravity currents of
Newtonian fluids flowing in inclined tubes (see e.g. Seon et al. 2006).

In natural systems, gravity flow of elongated drops in circular vertical pipes mimics
magma flows in volcanoes, where degassing and temperature effects induce vertical
exchange between fluids of different density and viscosity (Kazahaya, Shinohara & Saito
1994; Stevenson & Blake 1998; Llewellin & Manga 2005). Other than magma ascension
during eruptions, the phenomenon is typically associated with lock-exchange flows, and is
controlled by the density difference between the ascending and the descending fluids, and
by their viscosity. We note that we mean fluid ascending on average, since, depending on
the characteristics of the flow field, part of the lighter fluid may be dragged downwards
by the denser fluid, producing a backflow. In a typical configuration, gas Taylor bubbles
(Taylor 1961), symmetric and bullet shaped, ascend near the axis of the pipe, while the
heavier fluid descends, remaining in contact with the walls. This well-defined process
has received attention from numerous researchers, who developed analytical models and
performed experimental measurements, in particular for elongated gas bubbles in circular
pipes (Viana et al. 2003). In terms of dominant forces, the balance can be between
buoyancy and (i) inertia, (ii) viscosity or (iii) surface tension. The ascent speed scales
with different variables and parameters, and the flow stability is affected by the numerical
value of relevant dimensionless parameters. In the buoyancy–inertia regime, the ascent
speed is proportional to

√
gR, where g is gravity and R is the radius of curvature in the

region of the vertex (Davies & Taylor 1950). In the buoyancy–viscosity regime, the ascent
speed is ∝ΔρgD2/μ where ρ and μ are the fluid density and dynamic viscosity and D is
the equivalent diameter of the bubble. In some cases, inertial, capillary and viscous forces
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are of the same order of magnitude, and the ascent speed expression varies according to
the flow regime (see Peebles 1953; Wallis 1969).

A key element in the rise of Taylor bubbles in vertical circular pipes is the thickness
of the descending liquid film, experimentally analysed by Llewellin et al. (2012) for
Newtonian fluids as a function of a buoyancy Reynolds number D

√
gD/ν, where D is

the pipe diameter and ν is the fluid kinematic viscosity. A reduction in film thickness
causes an increase in the skin friction drag on the bubble, with a rate depending on ν in
the viscous regime; conversely, buoyancy also increases. As a result, the film thickness is
inversely proportional to the buoyancy Reynolds number. If surface tension is considered,
the film thickness also undergoes a decrease with increasing Eötvös number, defined as
the ratio of gravitational to capillary forces, even to the point of blocking bubble rise when
surface tension is dominant.

Similar analyses have been conducted for bubbles rising in the presence of
non-Newtonian fluids (Shosho & Ryan 2001). However, the results appear to be
unconvincing also because the fluid rheology is largely disregarded; some indications
may be inferred from the nature of the non-Newtonian fluid (e.g. carboxymethyl cellulose
mixtures are generally shear thinning), but the characterization is poor and, in defining
dimensionless groups, reference is generically made to the average viscosity measured at
low shear-rate values. No significant influence on the bubble rise is attributed by Shosho
& Ryan (2001) to the fluid rheology.

There exist a number of recent studies on bubbles displaced by flows of non-Newtonian
ambient fluids in different contexts. Jalaal & Balmforth (2016) conducted a lubrication
analysis of the thin films buffering a long bubble that is displaced down a slit or tube
by ambient viscoplastic fluid flow. Laborie et al. (2017) revisited the classical Taylor
and Bretherton film deposition problem in a circular channel adopting a yield-stress
shear-thinning fluid rather than a Newtonian one. Zare, Daneshi & Frigaard (2021)
observed experimentally and studied theoretically that bubbles rising in a yield-stress
fluid create pathways that are preferentially followed by subsequent bubbles. Shemilt et al.
(2022) performed a stability analysis of an axisymmetric layer of a viscoplastic Bingham
liquid coating the interior of a rigid tube, modelling an airway in the presence of mucus.

A behaviour akin to Taylor bubbles is observed in Taylor drops, which consist of a liquid
rather than a gas. In this case, the dynamics of the ascending liquid becomes as important
as that of the descending liquid, and requires further investigation in order to evaluate,
for example, the speed of ascent or the thickness of the descending liquid film. Taylor
drops form naturally, e.g. in volcanic chimneys as a result of degassing, which generates
a magma of lower density than the ambient liquid and substantially affects viscosity
(Francis, Oppenheimer & Stevenson 1993) by causing crystallization of a mass fraction.
In this regard, the conveyor-belt scheme proposed by Huppert & Hallworth (2007) is of
particular interest: the magma, relatively rich in gas (sulphur dioxide is mainly considered,
due to the easy measurements with respect to other gases) rises in the volcanic chimney
and, once at the surface, releases the gas into the atmosphere. Near the surface, the process
is amplified by the pressure drop, as the gas bubbles increase their size and more bubbles
develop according to Henry’s law. Gas liberation, with the growth of crystals, in turn
produces an increase in the average density of magma, and the process is also accentuated
by cooling that results in a viscosity increase: thus denser and more viscous magma is
available, which sinks into the chimney with a movement of a convective nature that leads
to a much lower average erupted flow rate than is actually recirculated. This is why the
evaluation of the magma flow rate based on the measured amount of sulphur dioxide
overestimates the actual flow rate by several orders of magnitude.
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In describing the convective motion of magma, we have assumed so far that the
less dense magma rises near the conduit axis, while the denser magma descends at its
periphery. Actually, this configuration is only one among the several possible forms of
the process, since numerous experimental tests have shown different flow regimes as a
function of the viscosity ratio (also defined viscosity contrast) between the descending
and ascending fluids, M = μd/μa: according to Kazahaya et al. (1994), the ascending
fluid is near the axis only if M > 300; it occupies the periphery of the conduit, remaining
adherent to the walls, for M < 10; for 10 < M < 300 the descending fluid splits into
blobs. In fact, the classification of the field geometry appears vague, since the counter-flux
of two fluids in vertical pipes is largely unstable (Joseph et al. 1997). Indeed, several
authors have been interested in the stability of core-annular flow in the various possible
configurations, performing linear (Hickox 1971) or nonlinear (Chen & Joseph 1991)
analyses. A common conclusion is that for a high viscosity contrast and due to the effect of
surface tension, a core-annular flow that is inherently unstable appears stable or possibly
metastable, with the presence of standing waves (bamboo and corkscrew) (see e.g. Bai,
Chen & Joseph 1992). Stability has been analysed in depth by Suckale et al. (2018): they
conclude that bistability is inherent to core-annular flows, and it is not possible to predict
which of the two possible equilibrium configurations (thin- and thick-core solutions)
actually takes place on the basis of pipe geometry and fluid rheology alone. Instead, it
is necessary to consider the boundary conditions.

In general, we expect the mechanics of Taylor drops and of slug flows or elongated
drops generated by a lock exchange to be different, but as long as the viscosity difference
between the two fluids is at least one order of magnitude, the speed of rise is the same
(Stevenson & Blake 1998). This enables collapse of the results of experiments despite the
differences in the geometry of the flow field.

The buoyancy-driven flow of Taylor drops in the buoyancy–viscous regime has been
analysed in detail by Picchi, Suckale & Battiato (2020), using mechanical energy budgets
including dissipation to correctly scale the radius and the speed of rise of the drops.
In the non-dissipative regime, the dimensionless radius of the drops during steady-state
ascent does not depend on fluid characteristics, and is equal to

√
2/2; when dissipation is

considered, it is equal to
√

2R/2, where R = ρa/ρd < 1 is the density ratio, indicating
that dissipation decreases the radius of the internal ascending current and increases the
thickness of the descending current.

The present work extends the study of Taylor drops to a nonlinear rheology. Specifically,
the ascending fluid is taken to be non-Newtonian and shear thinning, while the descending
fluid is Newtonian. The shear-thinning behaviour is represented in general via the
three-parameter Herschel–Bulkley (HB) model, able to capture the presence of a non-zero
yield stress, which is fundamental in many applications; when the yield stress is negligible,
the HB model reduces to the Ostwald–de Waele (OdW) model. As the latter model has
the known drawback of an unrealistically large apparent viscosity for low shear stress
values, we also present novel developments for the three-parameter Ellis model. The
adoption of a non-Newtonian rheology in the context of buoyancy-driven vertical flows
is mainly motivated by geophysical applications, and is in particular largely documented
for magma flow (Manga et al. 1998; Sonder, Zimanowski & Büttner 2006; Jones,
Llewellin & Mader 2020); a nonlinear rheology is also associated with the presence of
gas bubbles and crystals, so the scheme adopted appears realistic and representative of
field cases of interest. In all of the aforementioned works, the non-Newtonian behaviour
is associated with an OdW shear-thinning or Cross model without yield stress, but a
non-zero yield stress characterizes materials such as subliquidus basalt (Hoover, Cashman
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& Manga 2001) in volcanic applications and edible crystal-melt suspensions (Mishra,
Dufour & Windhab 2020) in the food industry.

We develop a theoretical model and experimentally validate it in an integral manner
by measuring the ascent front speed and the radius of the inner current, generated with a
lock-exchange set-up. Further, detailed measurements pertain to the velocity profiles.

The paper is organized as follows. Section 2 describes the theoretical model under
the hypothesis of long drops, with the ascending fluid modelled according to the HB
constitutive equation or its simpler subcase, the OdW equation. Section 3 describes a
modification of the model using the Ellis rheology for the ascending non-Newtonian
fluid. Section 4 derives and analyses the energy budget of the current to understand
the dependence of the drop thickness on problem parameters, while § 5 reports the
asymptotic values of the transport parameters. Section 6 describes the experiments and the
measurement techniques. A discussion on observed bistability effects is included in § 7.
Section 8 contains the conclusions and perspectives for future work. Mathematical details
on the mechanics of the ascending and descending currents are reported in Appendix A,
while dynamic similarity criteria are explained in Appendix B. Appendix C depicts the
flow curves for the HB fluids used in the experiments.

2. Theoretical model with ascending HB fluid

We consider two immiscible and incompressible fluids moving in opposite directions in a
circular pipe, with a rheology described by the following general constitutive equation:

T = −pI + 2ηD = −pI + τ , (2.1)

where p is the pressure, I is the unit tensor, D = (1/2)(∇v + ∇vT) is the strain-rate tensor,
τ = 2ηD is the deviatoric tensor and η is the apparent viscosity. In particular, in the present
section, the first fluid is taken to be described by the HB model (Herschel & Bulkley 1926),
given by

|τ | ≤ τy if |γ̇ | = 0,

τ =
(

μ0|γ̇ |n−1 + τy

|γ̇ |
)

γ̇ if |γ̇ | /= 0,

⎫⎬⎭ (2.2)

where μ0 is the consistency index, n is the fluid behaviour index, τy is the yield stress
(positive), |γ̇ | = √

(γ̇ : γ̇ )/2 and |τ | = √
(τ : τ )/2 are a (positive) measure of the shear

rate and of the stress, respectively, with γ̇ : γ̇ = γ̇ijγ̇
ij and τ : τ = τijτ

ij; in the latter
expressions, the Einstein notation applies. If τy = 0, the HB model describes an OdW
fluid (Morrell & de Waele 1920; Ostwald 1929), if n = 1, (2.2) represents a Bingham fluid
(Bingham 1922) and, if τy = 0 and n = 1, (2.2) models a Newtonian fluid. The assumption
of an ascending HB fluid holds for the entire § 2 and is relaxed in § 3.

The second fluid is always taken to be Newtonian, hence η = μd, where μd is the
viscosity independent of the shear rate.

The flow problem is fully described by the continuity equation under the
incompressibility constraint

∇ · v = 0, (2.3)
and by the linear momentum balance equation

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + ∇ · τ + ρb, (2.4)

where v is the velocity field and b is the body force per unit mass, reducing to gravity only
in many applications.
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Figure 1. Schematic of a long drop in a circular pipe. The descending fluid (red) moves near the walls with an
annular cross-section, the ascending fluid moves near the pipe axis. Here, zd and za are the coordinates of the
descending and ascending fronts, L = za − zd is the length of the drop, Ud and Ua are the front speeds of the
two fluids.

Let us consider a vertical pipe where the inner ascending current, of lower density,
has the said HB rheology and the heavier descending current, in contact with the pipe
walls, is Newtonian; see figure 1. Both currents fall under the buoyancy–viscosity regime.
We further assume that the ascending current, or long drop, has a length scale parallel
to the z axis equal to L and a radial scale equal to the pipe radius R, with an aspect
ratio ε = R/L � 1. To derive the vertical velocity scale U, we equate, under steady-state
conditions, the buoyancy ΔρgR to the viscous forces at the pipe wall, μdU/R, yielding

ΔρgR ∼ μdU
R

, or U = ΔρgR2

μd
, (2.5)

where Δρ = ρd − ρa, and ρa and ρd are the density of the lighter HB ascending fluid
and of the denser Newtonian descending fluid, respectively. By continuity, the radial
velocity scale is UR/L ≡ εU, the time scale is L/U ≡ (R/U)/ε and the pressure scale
is μdUL/R2 ≡ μdU/(εR).

Dimensionless relevant parameters are the density ratio R ≡ ρa/ρd < 1, the
Archimedes number Ar = ρdΔρgR3/μ2

d, equal to the ratio between buoyancy and viscous
forces, the Reynolds number Re = (ρdR

√
gRΔρ/ρd)/μd, the viscosity contrast

M = μd

μ0(U/R)n−1 ≡ μd

μ0

(
ΔρgR

μd

)1−n

, (2.6)

i.e. the ratio between the scales of the viscous Newtonian and power-law stresses, and the
modified Bingham number for HB fluids

Bm = τy

μ0(U/R)n , (2.7)
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the ratio between the yield stress and the scale of the shear component of the tangential
stress. Large values of M indicate a dominant viscosity in the descending Newtonian
fluid, while large values of Bm indicate a dominant contribution of the yield stress to the
dynamics of the ascending HB fluid.

The mass balance and momentum equations in a cylindrical geometry for the two fluids
can be derived in dimensionless form as reported in Appendix A. In particular, if M � ε,
(A11)–(A14) reduce at O(1) to

1
r̃

∂

∂ r̃

(
r̃
∂ ũd

∂ r̃

)
= ∂ p̃d

∂ z̃
+ 1

1 − R , r̃ ∈ [δ̃, 1],

1
M

1
r̃

∂

∂ r̃

(
r̃

∣∣∣∣∂ ũa

∂ r̃

∣∣∣∣n−1
∂ ũa

∂ r̃

)

+ sgn
(

∂ ũa

∂ r̃

)
Bm
M

1
r̃

= ∂ p̃a

∂ z̃
+ R

1 − R ,

if |τrz| > τy, r̃ ∈ [0, δ̃],

ũa = const., if |τrz| ≤ τy, r̃ ∈ [0, δ̃],

∂ p̃d

∂ r̃
= ∂ p̃a

∂ r̃
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

for the descending and the ascending fluid, respectively. The symbol ·̃ · · indicates a
dimensionless variable and δ is the radius of the internal current.

Neglecting the interface tension, the pressure assumes a unique value in the horizontal
cross-section for the descending and ascending fluids, pd = pa = p(z), and (2.8) can be
written as

1
r

d
dr

(
r
dud

dr

)
= dp

dz
+ 1

1 − R︸ ︷︷ ︸
P

, r ∈ [δ, 1],

1
M

1
r

d
dr

(
r

∣∣∣∣dua

dr

∣∣∣∣n−1 dua

dr

)

+ sgn
(

dua

dr

)
Bm
M

1
r

= dp
dz

+ R
1 − R︸ ︷︷ ︸

P−1

,

if |τrz| > τy, r ∈ [0, δ],

ua = const., if |τrz| ≤ τy, r ∈ [0, δ],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

where the tilde has been dropped for simplicity. The boundary conditions are

ud(1) = 0,

ua(0) is finite,

ud(δ) = ua(δ),

dud

dr

∣∣∣∣
r=δ

= 1
M

∣∣∣∣dua

dr

∣∣∣∣n−1

r=δ

dua

dr

∣∣∣∣
r=δ

+ Bm
M sgn

(
dua

dr

∣∣∣∣
r=δ

)
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.10)

representing (i) the no-slip condition at the wall, (ii) the finiteness of velocity at the axis
and the continuity of (iii) velocity and (iv) shear stress τrz at the interface between the two
fluids.
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Solving the differential problem yields the following velocity profile:

ud(r) = P
4

(r2 − 1) − δ2

2
ln r, r ∈ [δ, 1],

ua(r) = n
n + 1

[M(1 − P)δ − 2Bm](n+1)/n − [M(1 − P)r − 2Bm](n+1)/n

M(1 − P)21/n

+ P
4

(δ2 − 1) − δ2

2
ln δ,

r ∈ [ry, δ],

ua(plug) ≡ ua(ry), r ∈ [0, ry],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.11)

where P = dp/dz + 1/(1 − R) is the driving force of the ascending fluid and ry =
2Bm/[M(1 − P)] is the radius of the axial plug. Imposing a zero net flux at the generic
cross-section of the pipe by setting∫ δ

0
2πrua dr +

∫ 1

δ

2πrud dr = 0, (2.12)

we obtain an equation involving M, Bm, P, δ and n, to be solved numerically in order to
evaluate P .

For the case of a OdW fluid (a HB fluid with null yield stress, Bm = 0) the ascending
and descending velocities reduce to

ud(r) = P
4

(r2 − 1) − δ2

2
ln r, r ∈ [δ, 1],

ua(r) = n
n + 1

[M(1 − P)

2

]1/n

(δ(n+1)/n − r(n+1)/n)

+ P
4

(δ2 − 1) − δ2

2
ln δ,

r ∈ [0, δ],

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.13)

and the zero net flux condition in the generic cross-section, (2.12), becomes

(1 − δ4)P
8

− nδ(3n+1)/n

(3n + 1)

[M(1 − P)

2

]1/n

− δ2(1 − δ2)

4
= 0. (2.14)

Equation (2.14) admits an analytical solution for n = 1, 1/2, 1/3, 1/4 (and for n = 2, 3, 4,
a shear-thickening fluid). For n = 1 it results in

P = δ2 (2δ2 − δ2M − 2)

δ4 − δ4M − 1
, (2.15)

coincident with the solution derived by Picchi et al. (2020). For n = 1/2 the closed-form
solution is

P = 1 + 5(1 − δ4)

4δ5M2 −
√

5(1 − δ2)

4δ5M2

√
5δ4 + 10δ2 + 8δ5M2 + 5. (2.16)

The analytical solutions for n = 1/3, 1/4 are cumbersome and are not shown; a numerical
solution to (2.14) can be derived for any value of the fluid behaviour index.

Figure 2(a) shows the overall driving term P as a function of the long drop radius δ

and figure 2(b) does the same for the pressure gradient; different values of the viscosity
ratio M, density ratio R and flow behaviour index n are considered. On the one hand,
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Figure 2. An OdW ascending fluid (Bm = 0) and Newtonian descending fluid. (a) Dimensionless P as a
function of the long drop radius δ and of the viscosity ratio M for a fluid behaviour index of the ascending
fluid n = 1, 1/2, 1/3; (b) dimensionless pressure gradient as a function of δ and of the density ratio R for
M = 10. The inset shows the domain δ − M where the P for Newtonian fluid exceeds P for a shear-thinning
fluid with n = 1/2 or 1/3: the two curves cannot be distinguished.
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Figure 3. Velocity profiles for a generic configuration with δ = 0.6 for different values of the viscosity ratio
M, and for flow behaviour indexes n = 1, 0.7, (a) for OdW fluids (Bm = 0) and (b) for HB fluids with Bm =
0.05. The thicker part of the curves near the axis indicates the plug.

the driving term increases with the drop radius, more rapidly for lower δ values and larger
viscosity ratios M, until a quasi-linear increase is reached for unit M; more shear-thinning
fluids determine a more rapid increase of P for larger viscosity ratios, while the influence
of rheology is modest for lower viscosity ratios. On the other hand, the pressure gradient
increases with the drop radius and also, significantly so, with the density ratio R, while
it remains largely unaffected by the fluid rheology. Figure 3(a) shows the velocity profiles
computed for a Newtonian and a shear-thinning OdW fluid, for different values of M and
for δ = 0.6. Figure 3(b) does the same for the case of an ascending HB fluid, with the
presence of a modest plug as a consequence of the non-zero value of Bm selected; the
velocity profile is almost unaffected by the presence of the plug. A backflow of the inner
current is observed in both cases as a consequence of the drag of the descending outer
current. An increasing viscosity contrast M between the internal and the external fluid
determines an increasing backflow in the ascending fluid; shear-thinning fluids show a
flattened velocity distribution near the axis, more so for low values of M.
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Figure 4. Radius of the plug ry as a function of the radius δ of the inner ascending current for different values
of its properties n and Bm and for M = 10. The grey area represents the shearing zone for a HB fluid with
Bm = 1.
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Figure 5. Tangential stress at r = δ, the interface between the inner and the outer current, as a function of the
fluid behaviour index n and of the Bingham number Bm of the inner ascending fluid, for M = 10.

Figure 4 shows the radius of the plug for different properties of the HB fluids
constituting the internal ascending current. The dashed grey area represents the fluid
domain subject to shear for a fixed Bm value: the domain becomes larger for small values
of Bm. The plug radius decreases for increasing Bm and for more shear-thinning fluids.

The shear stress at the interface is shown in figure 5 as a function of the interface
position δ for different values of Bm and n of the ascending inner fluid and a fixed viscosity
ratio. The (negative) shear stress decreases with increasing δ, reaches a minimum and then
increases to zero for δ = 1. Conversely, for a given δ the magnitude of the tangential stress
increases with Bm and is greater for shear-thinning than for Newtonian fluids.

Figures 6(a) and 6(b) show the velocity and the tangential stress profiles for an ascending
non-Newtonian fluid with zero (OdW) and non-zero (HB) yield stress, respectively.
A backflow occurs in both cases, with the non-Newtonian fluid dragged down by the
Newtonian one at their interface, while a plug is evident for the HB fluid. The velocity
profiles associated with the HB fluid are flatter due to the presence of the plug. The
tangential stress shows a linear behaviour, attaining the minimum value at the drop radius,
the maximum value at the outer wall and a null value where the downward Newtonian
velocity is larger in absolute value.
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Figure 6. Velocity profiles (blue hatched) and tangential stress (green hatched) radial distributions for a
Newtonian descending fluid and (a) an OdW ascending shear-thinning fluid (Bm = 0) and (b) a HB ascending
fluid (Bm = 0.2). The parameter values are n = 0.5, M = 10, δ = 0.6.

The average ascending and descending speed of the long drop is obtained by averaging
the velocity profiles (2.11) along the cross-section

Ua = 1
πδ2

∫ δ

0
2πrua(r) dr, Ud = 1

π(1 − δ2)

∫ 1

δ

2πrud(r) dr. (2.17a,b)

Since the zero net flux condition, (2.12), can be written as UaAa + UdAd = 0, this gives

Ua = −Ad

Aa
Ud = δ2 − 1

δ2 Ud. (2.18)

Figure 7 shows the speed of the ascending and descending fronts as a function of the
long drop radius δ and of the viscosity contrast M for an ascending fluid that is Newtonian
(n = 1) and shear-thinning OdW fluid (Bm = 0) with n = 1/2, 1/3. It is seen that the
speed of the ascending fluid depends on the long drop radius in a non-monotonic fashion,
first increasing from zero, reaching a maximum and then decreasing towards zero as δ goes
from zero to unity. The ascent speed strongly increases for a large viscosity contrast M
until δ < 0.8, while it is modestly affected by the fluid rheology. The downward speed
of the descending Newtonian fluid shows a similar behaviour, except the influence of
the rheology of the ascending fluid is relatively more impactful. Further, the n-index
modulates the speed, and it can happen that a current with n < 1 shows a higher ascent
speed than one with n = 1. To exemplify this case, figure 8 shows the δ − M shaded
domain where an OdW ascending fluid with n = 1/2 or 1/3 generates a long drop faster
than a HB ascending fluid with n = 1 and Bm = 0.0, 0.1, 1.0. The domain is almost
rectangular with δ ranging from 0.05 to 0.55 for M > 80, while its width narrows for
M < 80, until at M ≈ 10.4 for both n = 1/2 and 1/3, the required condition is satisfied
only for a single value, δ = 0.32. Increasing Bm results in a shrinking of the domain.

The limit condition M → ∞ is equivalent to a descending Newtonian fluid having a
viscosity much larger than the viscosity (for a Newtonian ascending fluid) or the apparent
viscosity (for a HB ascending fluid) of the inner current. The asymptotic speeds are

Ud(δ, M → ∞, Bm, n) = −δ4(3 − 4 ln δ) + 1 − 4δ2

8(1 − δ2)
,

Ua(δ, M → ∞, Bm, n) = δ4(3 − 4 ln δ) + 1 − 4δ2

8δ2 ,

⎫⎪⎪⎬⎪⎪⎭ (2.19)
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Figure 7. Long drop average speed for an OdW ascending fluid (Bm = 0). (a) Ascent speed and (b) descent
speed as a function of the long drop radius δ and the viscosity ratio M for n = 1, 1/2, 1/3.
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Figure 8. Ranges δ–M where the ascent speed for an OdW fluid with n = 1/2 and n = 1/3 is larger than the
ascent speed for a HB fluid with n = 1 and Bm = 0, 0.1, 1.

and do not depend on Bm or the fluid behaviour index n. This result was expected,
since in (2.9), the limit M → ∞, with finite Bm, leads to the condition P = 1 with the
homogeneous boundary condition dud/dr = 0 at r = δ, which allows integration of the
velocity profile of the Newtonian descending current without involving any rheological
parameter of the ascending fluid. When M → ∞ and Bm is of the same order as M, the
boundary conditions for the descending fluid reduces to dud/dr = −Bm/M at r = δ, and
the asymptotic speeds are

Ud(δ, M → ∞, Bm = O(M), n) = −δ4(3 − 4 ln δ) + 1 − 4δ2

8(1 − δ2)
+ Bm

M
1 − δ2

8δ
,

Ua(δ, M → ∞, Bm = O(M), n) = δ4(3 − 4 ln δ) + 1 − 4δ2

8δ2 − Bm
M

(1 − δ2)2

8δ3 ,

⎫⎪⎪⎬⎪⎪⎭
(2.20)

0 A1-12



Non-Newtonian long drops

with the descending current slowed by the tangential stress at the interface of the ascending
internal plug. Equations (2.20) are valid only for the δ values that make the average speed
for the descending and ascending current negative and positive, respectively.

The other limit of interest M → 0 corresponds to a rigid plug, and the speeds are

Ud(δ, M → 0, Bm = 0, n) = −δ4(δ2 − 1 − ln δ − δ2 ln δ)

2(1 − δ4)
,

Ua(δ, M → 0, Bm = 0, n) = δ2(δ2 − 1 − ln δ − δ2 ln δ)

2(δ2 + 1)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.21)

again independent on the fluid behaviour index n. Note that, for M → 0, the limiting
radius of the plug tends to infinity unless Bm = 0 since ry = 2Bm/(M(1 − P)) with P <

1, so the latter limit condition is only valid for an OdW fluid with Bm = 0.
For M = O(1) and Bm sufficiently large, the ascending current is all plug, with P →

2δ2/(1 + δ2). The condition ry = δ is reached for Bm = Mδ(1 − δ2)/(2 + 2δ2), with a
maximum value Bm ≈ 0.15M, so for Bm not particularly large. The asymptotic speeds
are again those in (2.21).

A more in-depth analysis of the asymptotic ascending speed for M → 0 and M → ∞,
and of the corresponding flow rate, is reported in § 5.

3. The Ellis model for the inner ascending current

In the previous section, the HB model adopted for the ascending fluid reduces to the
OdW model for Bm = 0. Now the OdW model typically shows an inconsistency: the
apparent viscosity tends to infinity for shear rates tending to zero (see e.g. Myers 2005).
In order to eliminate this inconsistency and to adapt the rheological model to the effective
experimental behaviour of shear-thinning fluids, we adopt the three-parameter Ellis model,
which has been extensively and successfully applied to describe the flow in complex
geometries (Al-Behadili et al. 2019; Ali et al. 2019; Celli, Barletta & Brandão 2021;
Ciriello et al. 2021; Picchi et al. 2021). The Ellis model relates the apparent viscosity
to the stress tensor as

η = η0

1 +
(

τ : τ

2τ 2
0

)(α−1)/2 , (3.1)

where τ0 is the shear stress corresponding to an apparent viscosity η0/2 and α ≥ 1 for a
shear-thinning fluid is an indicial parameter. The apparent viscosity tends to 0 for τ0 → 0
and α > 1 and tends to η0/2 for α → 1. For intense shear stress τ � τ0 the apparent
viscosity reduces to

η = η0

(
τ

τ0

)1−α

α /= 1, (3.2)

and the fluid behaves as an OdW power law with α = 1/n and a consistency factor μ0 =
ηn

0τ 1−n
0 . For α = 1 the fluid is Newtonian with η = η0/2.
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With the same approximations adopted for an ascending HB fluid, the balance of linear
momentum in the vertical direction reads

1
M′

∂ ũa

∂ r̃
=

⎛⎜⎜⎝∂ p̃a

∂ z̃
+ R

1 − R︸ ︷︷ ︸
P−1

⎞⎟⎟⎠
⎡⎢⎢⎣1 + β

∣∣∣∣∣∣∣∣
∂ p̃a

∂ z̃
+ R

1 − R︸ ︷︷ ︸
P−1

∣∣∣∣∣∣∣∣
α−1 (

r̃
2

)α−1

⎤⎥⎥⎦ r̃
2

, r̃ ∈ [0, δ̃],

(3.3)
where a second viscosity ratio

M′ = μd

η0
, (3.4)

was introduced, and the parameter

β =
(

Δρ gR
τ0

)α−1

, (3.5)

measures the relative importance of buoyancy and the typical shear stress of an Ellis fluid.
The boundary conditions are

ud(1) = 0,

ua(0) is finite,

ud(δ) = ua(δ),

dua

dr

∣∣∣∣
r=δ

= M′
[

1 + β

∣∣∣∣ dud

dr

∣∣∣∣
r=δ

∣∣∣∣α−1
]

dud

dr

∣∣∣∣
r=δ

,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.6)

with the same meaning as (2.10) and where the tilde has been dropped.
Solving the differential problem, we calculate the following velocity profiles:

ud(r) = P
4

(r2 − 1) − δ2

2
ln r, r ∈ [δ, 1],

ua(r) = M′(1 − P)
δ2 − r2

4
+ M′β(1 − P)α δα+1 − rα+1

2α(α + 1)

+ P
4

(δ2 − 1) − δ2

2
ln δ,

r ∈ [0, δ],

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

where we have assumed P < 1 for physical consistency. For τrz � τ0 (3.7) simplify as
follows:

ud(r) = P
4

(r2 − 1) − δ2

2
ln r, r ∈ [δ, 1],

ua(r) ≈ M′β(1 − P)α δα+1 − rα+1

2α(α + 1)

+ P
4

(δ2 − 1) − δ2

2
ln δ,

r ∈ [0, δ],

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.8)

which upon substituting α = 1/n and μ0 = ηn
0τ 1−n

0 collapse to (2.13) valid for an OdW
fluid.
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Figure 9. Ellis ascending fluid and Newtonian descending fluid. Velocity profiles for a generic configuration
with δ = 0.6, different values of the ratio β, α = 2, 3 and (a) M′ = 1 and (b) M′ = 10.

Figure 9 shows the velocity profiles computed for an ascending Ellis fluid, for different
values of M′, β, α and for δ = 0.6. The profiles are qualitatively similar to those for an
OdW fluid, with a backflow of the inner current due to the drag of the outer current; the
backflow is accentuated as the buoyancy dominates over the typical shear stress of an Ellis
fluid (larger β). More shear-thinning fluids (larger α) exhibit flatter velocity profiles and
hence less backflow. An increasing viscosity contrast M′ reduces the differences between
velocity profiles for different values of β and α.

The average speeds of the descending outer current and of the ascending inner current
are

Ud = 1
8(1 − δ2)

[2δ2(1 − δ2 + 2δ2 ln δ) − (1 − δ2)2P],

Ua = M′βδα+1(1 − P)α

2α(α + 3)
+ 1

8
M′δ2(1 − P) − 1

4
[2δ2 ln δ + P(1 − δ2)],

⎫⎪⎪⎬⎪⎪⎭ (3.9)

and the corresponding flow rates are Qd = π(1 − δ2)Ud, Qa = πδ2Ua.
Figure 10 shows the average speed as a function of the long drop radius δ, of the ratio

of scale stresses β, of the viscosity ratio M′ for Ellis shear-thinning fluids with α = 2, 3
and β = 10, 100, 1000, 10 000. As for OdW and HB fluids, the ascent speed peaks at an
intermediate value of the long drop radius; further, it is strongly impacted by the β value,
and significantly decreases with increasing shear-thinning behaviour, especially in the low
range of δ. A similar behaviour is shared by the Newtonian descent speed, except the
absolute values of the speed are lower.

By imposing Qa + Qd = 0, an equation in P, M′, β, α, δ is obtained, which may be
used to calculate the driving term P for given values of the other parameters. The equation
admits analytical solutions for α = 1, 2, 3, 4, and requires a numerical solution for other
values of α.

The asymptotic velocities for M′ → ∞ and for M′ → 0 collapse to (2.19) and to (2.21),
respectively, and are independent of β.

A more in-depth analysis of the asymptotic ascending speed for M′ → 0 and M′ →
∞, and of the corresponding flow rate, is reported in § 5.

4. The energy balance for a Newtonian descending fluid and a HB or Ellis ascending
fluid

The present section formulates the energy balance for the non-Newtonian ascending Taylor
drop; the balance is valid after enough time has elapsed from its formation, allowing the
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Figure 10. Long drop speeds for an Ellis ascending fluid and a Newtonian descending fluid. (a) Ascent speed
and (b) descent speed as a function of the long drop radius δ and the ratio β for α = 2, 3, M′ = 10.

drop to elongate so that the validity of the lubrication approximation previously employed
is ensured. The ascending drop gains energy in potential form, loses energy due to viscous
dissipation and stores some energy as kinetic energy of the two counter-current fluids.
Neglecting the work performed by the forces at the interfaces, the balance is between
kinetic energy Ek, potential energy Ep and viscous dissipation Φ according to (Picchi et al.
2020)

dEk

dt
+ dEp

dt
+ Φ = 0, (4.1)

written in dimensional form. The corresponding scales are Ek ∼ ρdU2LR2, Ep ∼ (ρd −
ρa)gL2R2 and Φ ∼ μdU2L, hence (4.1) can be written in dimensionless variables as

1
Ri(1 − R)

dẼk

dt̃
+ 1

1 − R
dẼp

dt̃
+ Φ̃ = 0, Ri = 1/[(1 − R)εAr], (4.2)

where Ri is the Richardson number expressing the ratio between potential and kinetic
energy. For the special case Ri → ∞ considered hereinafter the kinetic energy variation
is negligible and (4.2) reduces to

dẼp

dt̃
= −(1 − R)Φ̃. (4.3)

The potential energy in (4.1) is computed by integration over the drop region and is equal
to

Ep = ρdgπ

[
(R2 − δ2)

∫ za

zd

z dz + R2
∫ L

za

z dz
]

+ ρagπ

[
δ2

∫ za

zd

z dz + R2
∫ zd

−L
z dz

]
. (4.4)

In dimensionless form the potential energy results in

Ẽp = 1
2π[(1 − δ̃2)Ũ2

d − δ̃2Ũ2
a]t̃ 2 + const., (4.5)
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or equivalently

Ep = 2δ2 − 1
2πδ2(1 − δ2)

Q2
at2 + const., (4.6)

where Qa is the flow rate of the ascending current, also defined as the transport number Te
(see Huppert & Hallworth 2007), and the tilde symbol is omitted for simplicity.

The dissipation rate is computed as

Φ =
∫

Vd

(τ : D)d dV +
∫

Va

(τ : D)a dV, (4.7)

where Va,d refers to the volume of ascending lighter/descending denser fluid.
In a cylindrical geometry and under a HB rheology for the internal current one has

Φ ≡ Φd + Φa = 2πL(t)

{
μd

∫ R

δ

(
dud

dr

)2

dr +
∫ δ

0

[
μ0

∣∣∣∣dua

dr

∣∣∣∣n+1

+ τy

∣∣∣∣dua

dr

∣∣∣∣
]

dr

}
,

(4.8)
or in dimensionless form

Φ̃ ≡ Φ̃d + Φ̃a = 2πL̃(t̃)

{∫ 1

δ̃

(
dũd

dr̃

)2

dr̃ + 1
M

∫ δ̃

0

[∣∣∣∣dũa

dr̃

∣∣∣∣n+1

+ Bm
∣∣∣∣dũa

dr̃

∣∣∣∣
]

dr̃

}
.

(4.9)
Upon integration using (2.11), (4.9) transforms into

Φd = 2π(Ua − Ud)
{π

8
P[(1 − δ4)P − 4δ2(1 − δ2)] − π

2
δ4 ln δ

}
t,

Φa = 2π(Ua − Ud)

{
πn[δM(1 − P) − 2Bm](2n+1)/n[2nBm + δM(2n + 1)(1 − P)]

21/nM3(6n2 + 5n + 1)(1 − P)2

+ πBm[Bm + δM(1 − P)][2Bm − δM(1 − P)]2

3M3(1 − P)2

}
t,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.10)

where the symbol ·̃ · · is omitted for simplicity, and where L(t) = (Ua − Ud)t is the time
varying length of the drop. This suggests an alternative formulation of (4.9) as

Φ = Qa(Ua − Ud)t ≡ Q2
a

πδ2(1 − δ2)
t, (4.11)

clarifying that, in dimensionless form, the dissipation rate per unit length is equal to the
flow rate. Figure 11 depicts the dissipation rate per unit length Φ/L for two different
viscosity ratios and several combinations of ascending fluids. The dissipation rate is zero
at δ = 0, 1 and peaks at an intermediate value of δ in all cases. A higher total dissipation
rate is attained for a larger viscosity ratio, while shear-thinning effects decrease or increase
the total dissipation rate with respect to the Newtonian case n = 1 depending on the value
of the viscosity ratio. The appearance of a non-zero yield stress induces a lower total
dissipation rate for many combinations of viscosity ratio and fluid behaviour index, while
for other combinations the total dissipation rate is practically unchanged. There exists
a complex interplay between shear rate and shear stress, so it cannot be immediately
established which of the two terms is more affected by the presence of yield stress
(non-zero Bm) and by the value of the viscosity ratio.
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Figure 11. Dissipation rate per unit length Φ/L as a function of δ for M = 1, 103, n = 0.5, 1.0 and Bm =
0.0, 0.1, 1.0. The continuous curves refer to an OdW ascending fluid (Bm = 0.0), the dashed curves to Bm =
0.1 and the dot-dashed curves to Bm = 1.0 The red curves refer to the ascending HB or OdW current, the blue
curves to the descending Newtonian current, the black curves are the total dissipation. For M = 1 only curves
for Bm = 0.1 can be drawn, since for Bm = 1.0 it is always δ < ry.

Looking now at the individual contributions of the ascending and descending currents
to the total dissipation rate, it is seen that the contribution of the ascending current depends
on the viscosity ratio, fluid behaviour index and modified Bingham number, but tends to
be smaller than that of the descending Newtonian current in most cases.

The maximum dissipation rate is attained for intermediate values of δ in all cases.
Figure 12 shows the maximum dissipation rate and the corresponding radius of the
ascending internal current, δmax, vs M. The maximum dissipation rate increases with
the viscosity contrast, while the opposite is true for the corresponding radius. Both results
moderately depend on the fluid behaviour index, with values in a range limited by the
condition δ > ry. A modest dependence on the modified Bingham number is evident only
for the maximum dissipation rate and not for the corresponding radius.

We have now the expressions of the terms involved in the energy balance, (4.3), and
since Ep = f (δ(t), n, M, Bm, t), (4.3) can be written as

∂Ep

∂δ

dδ

dt
+ ∂Ep

∂t
= −(1 − R)Φ, (4.12)

or

dδ

dt
=

−(1 − R)Φ − ∂Ep

∂t
∂Ep

∂δ

≡ − δ(1 − δ2)(R − 2δ2)

−(1 − 2δ2 + 2δ4) + δ(1 − 3δ2 + 2δ4)
∂ ln Qa

∂δ

1
t
,

(4.13)
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Figure 13. Time evolution of the radius of the internal ascending current for n = 0.5, R = 0.8, Bm = 0.0
and (a) M = 1, (b) M → ∞.

which describes the time evolution of the radius of the ascending current, impacted
by rheology via the flow rate Qa. Figure 13 shows the evolution of the current by
integrating (4.13) with different initial conditions for a given OdW fluid. For M = 1,
initial conditions within the yellow band evolve into the asymptotic value δ3∞ = √

2R/2;
slightly different results are obtained for finite values of M, including M → 0; the two
physically meaningless asymptotes δ1∞ = 0 and δ2∞ = 1 are reached for initial conditions
out of the yellow band. For other M values, the width of the band varies. For M → ∞
the asymptotic value δ1∞ = 0 is missing, and the domain of attraction of δ3∞ is larger.
The results for a HB ascending fluid (not shown) are very similar, except for the case
M → ∞, which implies again the existence of the asymptotic solution δ1∞. Note that, for
a HB ascending fluid, the model requires that δ > ry.

Figure 14 depicts the time derivative of the radius of the ascending current, the
right-hand side of (4.13), at a given time for δ ∈ [0, 1] and different values of M, for
a shear-thinning OdW or HB fluid. For finite values of M there are three stable nodes
for δ1∞ = 0, δ2∞ = 1 and δ3∞ = √

2R/2, albeit the first two are physical meaningless.
It is noteworthy that similar results were obtained by Picchi et al. (2020) for Newtonian
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Figure 14. Evolution of the radius of the internal ascending current at t = 0.1 for n = 0.5, R = 0.8, Bm = 0,
and (a) M = 0, (b) M = 1, (c) M → ∞. The grey curves refer to a HB fluid with Bm = 0.1, and can be
drawn only in the domain δ > ry. The latter condition is never satisfied for M = 0 (a), is always satisfied for
M → ∞ (b) and is satisfied in a limited range of δ for M = 1 and Bm = 0.1 (c). The red curves refer to
a HB fluid with Bm = 1, and can be drawn only in the domain δ > ry, which is empty for M = 0, 1 and is
non-empty only for large M.

ascending fluids. The domain of attraction of the stable node δ3∞ depends mainly on M,
see figure 15 where the domain of attraction is shown for different values of the fluid
behaviour index n and for an OdW or HB fluid. The shear-thinning behaviour favours
moderately larger bandwidths, whereas the effect of the yield stress is generally modest.

If the ascending fluid is modelled according to the Ellis model, the dimensionless
dissipation rate is computed as

Φ ≡ Φd + Φa = L(t)

[∫ 1

δ

2π

(
dud

dr

)2

r dr +
∫ δ

0
2πM′(τ 2

rz + β|τrz|α+1)r dr

]
,

(4.14)

resulting in

Φd = 2π(Ua − Ud)
{π

8
P[(1 − δ4)P − 4δ2(1 − δ2)] − π

2
δ4 ln δ

}
t,

Φa = 2π(Ua − Ud)

[
8βδ3+α

α + 3
|1 − P|α+1 + 2αδ4(1 − P)2

]
πM′

2α+3 t.

⎫⎪⎪⎬⎪⎪⎭ (4.15)

The dimensionless dissipation rate is again expressed as a function of the flow rate
of the ascending current, see (4.11). The time evolution of the radius of the internal
current is identical to (4.13), only the expression of Qa changes as a consequence of the
different rheological model. When compared, the results are similar to those obtained for
the subcase of power-law fluid (not shown). It is important to point out that the asymptotic
value δ3∞ does not depend on the rheological behaviour of the ascending fluid, but only
on R.
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Figure 15. Domain of attraction of the stable node δ3∞ = √
2R/2 for n = 1, 1/2, 1/3, R = 0.8, Bm = 0

(OdW fluid). The grey curves, more evident in the enlargement below, refer to a HB fluid with Bm = 0.1
(thick grey) and to Bm = 1.0 (thin grey), the blue dashed and dot-dashed curves represent the condition δ > ry
for Bm = 0.1, 1.0, respectively. The vertical arrows indicate the direction of evolution over time of the radius
of the ascending current towards the stable node δ3∞ = √

2R/2.

5. The asymptotic ascending speed and flow rate

Adopting the HB model or the Ellis model for the inner ascending current, it is seen that its
ascent speed has two plateaus for M (M′) → 0 and for M (M′) → ∞, where it becomes
only a function of its radius. Figures 16 and 17 show the curves corresponding to zero and
non-zero yield stress for different values of the fluid behaviour index and two different
ratios of buoyancy to Ellis shear stress β for different values of the indicial parameter
α, respectively. For both rheologies, the asymptotic value is reached more quickly for
less shear-thinning behaviour, without yield stress (Bm = 0) for the HB fluid and larger
β for the Ellis fluid. The insets show the values of M, M′ above which 95 % of the
asymptotic ascent speed is reached, as a function of n, Bm or α, β. The asymptotic values
of the viscosity ratio are an increasing function of Bm and a decreasing function of β. For
M > 150 or M′ > 50, one can assume the asymptote is always reached irrespective of
the other parameters (except R that is included in δ3∞); by interpolating the numerical
values of the asymptotic velocity computed for several combinations R − M in the range
0.5 < R < 1 and M > 150 (or M′ > 50), the ascent speed and the corresponding flow
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Figure 16. The HB model for the ascending fluid, ascent speed Ua as a function of M for fluid behaviour index
n = 0.2, 0.4, 0.6, 0.8, 1.0. Bold curves show the ascent speed corresponding to the asymptotic core radius
δ3∞ = √

2/2 and Bm = 0; dashed and dot-dashed curves refer to Bm = 0.10, 1.0, respectively. The inset shows
the values of M as a function of n above which 95 % of the asymptotic ascent speed is reached.

rate can be approximated as

Ua ≈ 1.34 exp(−4R)

Qa ≡ Te ≈ 2.1R exp(−4R)
for M > 150(M′ > 50) and 0.5 < R < 1,

}
(5.1)

where a negative exponential function of the density ratio R was adopted for interpolation.
Equation (5.1) becomes in dimensional variables

Ua ≈ 1.34 exp(−4R)
Δρ gR2

μd

Qa ≈ 2.1R exp(−4R)
Δρ gR4

μd

for M > 150 orM′ > 50 and 0.5 < R < 1.

⎫⎪⎪⎬⎪⎪⎭ (5.2)

The transport number Te in (5.1) is consistent with the transport number computed by
adopting (4.7) in Picchi et al. (2020), also reproducing the results by Wallis (1969) and
Brauner & Ullmann (2004) for Taylor bubbles in the viscosity-controlled regime; it is
generally smaller than Te = 0.125 for M � 1 in Huppert & Hallworth (2007), where it
was computed with reference to the condition of maximum flow rate.

6. The experiments

6.1. Feasibility of dynamic similarity
Whenever we set up or analyse laboratory experiments, we wonder about the actual
correspondence between the results obtained and what would happen in the field. In this
regard, there is a large body of literature that allows us to identify the scale ratios necessary
to transform the values measured in the laboratory to actual measures, and allows the
identification of critical issues due to the impossibility, for example, of finding real fluids
with predetermined values of viscosity, specific gravity and fluid behaviour index (all
intensive quantities). The relevant similarity rules for the present process are detailed in
Appendix B.

For instance, in order to calculate scaling as referred to in real volcanoes conduits,
we assume that the radius of the conduit is 1–10 m and Δρp = 70 kg m−3,
with μd,p ∼ 2500 Pa s and μ0,p ∼ 1500 Pa s (the subscript stands for prototype and
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Figure 17. As in figure 16 but with the Ellis model describing the internal ascending fluid: ascent speed Ua
as a function of M′ for an indicial parameter α = 1, 1.5, 2, 2.5, 3. Bold curves refer to a ratio of buoyancy to
Ellis shear stress β = 100, dashed curves to β = 10.

model, respectively). If n = 1 and we adopt a mixture of glycerol (98.4 % wgt) and
water (1.5 % wgt) as descending fluid, with μd,m = 1 Pa s, this results in rμd = 1/2500 ≡
4 · 10−4 and we also must have rμ0 = rμd = 4 · 10−4, hence the ascending fluid in the
model must have a viscosity μ0,m = 0.6 Pa s. Such a fluid can be a mineral oil ISO 220
(SAE 50) at 20 ◦C with density ρa,m = 875 kg m−3. The mixture of water and glycerol
has a density ρd,m = 1257 kg m−3 and hence Δρm = 382 kg m−3, with rΔρ = 382/70 =
5.46. The length ratio must be λ = rμ0/rΔρ = 7.3 · 10−5 and, if we wish to reproduce a
volcanic conduit of radius Rp = 10 m, we need a pipe of radius Rm = λRp = 0.072 cm,
which does not make sense.

Unexpectedly, if the ascending fluid is shear thinning, full similarity is more likely. In
fact, if we consider an ascending magma with rheometric values μ0,p = 1500 Pa sn, τy,p =
20 Pa and n = 0.8 (all other density values and also rheometric values for the ascending
and descending fluid are identical to the previously analysed case), we can again set up a
model with glycerol plus water as descending fluid and with a shear-thinning mixture of
water and Carbopol with the same fluid behaviour index as the ascending magma, and with
μ0,m = 1Pa sn and ρa,m = 1000 kg m−3. The imposed scales are rμd = 4 · 10−4 and rμ0 =
6.67 · 10−4, resulting in rτy = 5.14 · 10−3 which forces τy,m = 0.10 Pa, a value which can
be achieved by modifying the content of Carbopol (this can be tricky but not impossible).
The length ratio is λ = 1.4 · 10−3, which forces the selection of a pipe with radius Rm =
1.4 cm if Rp = 10 m. The viscosity contrast is M = 2 and the modified Bingham number
Bm = 0.0059. The Reynolds numbers are Rem = 3 and Rep = 17, and the Archimedes
numbers are Arm = 8.7 and Arp = 27.5.

It is necessary to verify that the differences in the Archimedes number and Reynolds
number are not significant for the regime of the currents. Note that Rm = 0.80 and
Rp = 0.97 and this leads to a different value of the asymptotic radius of the ascending
internal current, δ3∞ = √

2R/2, in the model and in the prototype: this must be taken into
account in the calculation of the ascent speed and of all the variables depending on R.
This is equivalent to introducing a scaling effect, which can be eliminated by the additional
condition rR = 1 → rρd = rρa . Unfortunately, the latter condition is hardly feasible.

Note that the presence/absence of a yield stress does not change the most important
scales, although it does affect the dimensional values of the quantities involved. Similar
results are obtained with an Ellis model for the ascending fluid.
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Figure 18. Experimental set-up. (a) Vertical pipe with the USB microscope camera and the video camera
for large-scale image analysis; (b) a photo of the pipe, as seen from the USB camera microscope, containing
glycerol and inserted in the box filled with glycerol, in order to correct the image distortion. The needle with a
series of equispaced marks shows the efficiency of the distortion correction. See also the enlargement.

In conclusion, for the present process it makes sense to consider laboratory experiments
(small scale) as representative of real (large-scale) phenomena, although great care must
be taken in selecting the fluids and in controlling the range of all parameters involved.

6.2. Experimental set-up and protocol
To validate the model and verify the assumptions and limitations, we conducted a series
of tests in the Hydraulic Laboratory of the University of Parma. The experimental
apparatus consists of a polymethyl methacrylate (PMMA) pipe with an internal diameter
of 14.1 ± 0.2 mm (calculated using a volumetric method) and a length of 150 cm, see
figure 18(a). The pipe is closed at both ends and, in the middle, has a slide gate that allows
the two 75 cm portions of the pipe to be separated or connected. In a cross-section 5 cm
from the gate, a flat-walled cell of PMMA was fitted around the pipe, to be filled with
glycerol, which has a refractive index 1.474 at 20 ◦C almost identical to that of PMMA;
the refractive index of aqueous glycerol solutions increases linearly with increase in
glycerol concentration and can be expressed as (Takamura, Fischer & Morrow 2012)
nr = 1.333ww + 1.474wgl, where ww and wgl are the weight fraction of water and glycerol
in the mixture. Since the tests were carried out using glycerol as a descending fluid,
always adhering to the walls of the pipe in the experimental configuration adopted, the
experimental apparatus allows correction of the refraction with a negligible residual
distortion. Some tests were conducted with honey as a descending fluid, which has an
index of refraction almost identical to glycerol. To check the refractive index correction,
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(a) (b) (c)

Figure 19. Experiment 2 (see table 1) with inner ascending and outer descending Newtonian fluids. Here,
R = 0.796, Ar = 1.11, M = 103, Bm = 0. Three snapshots at different stages of the current evolution are
shown.

a needle with marks engraved every half a millimetre was inserted diametrically into the
pipe, see figure 18(b): the marks look equispaced even in the presence of the circular walls
of the pipe.

The verticality of the pipe was controlled with an electronic spirit level accurate to one
tenth of a sexagesimal degree; the temperature of the fluids, in thermal equilibrium with
the environment, was measured with a thermometer accurate to a tenth of a degree Celsius.

The fluid of the outer current, which is heavier and more viscous than the inner
current, is glycerol as anticipated; the fluid of the inner current is water (Newtonian),
water and Carboxymethyl cellulose and Xanthan Gum (both shear thinning), water
and Carbopol (a polyacrylic acid) neutralized with NaOH (shear thinning with yield
stress, non-thixotropic). Rheometric measurements were carried out with an Anton Paar
TwinDrive MCR 702 parallel plate rheometer and with a Haake Rotovisco RT10 with
Searle coaxial cylinder measuring system, in shear rate control; density measurements
were performed with a pycnometer and an Anton Paar DMA 5000 M densimeter.

Images were taken in the refraction corrected section with a microscopy webcam with
640 × 480 pixels at 25 frames per second (f.p.s.), with a field of view approximately
30 × 25 mm2 and with a resolution ≈ 0.05 mm pixel−1. The inner current was coloured
with aniline dye to facilitate image analysis. The diameter of the inner current was
estimated using proprietary software in Matlab that involves manual identification of
contours and conversion from pixels to metric coordinates. The operation is repeated in ten
cross-sections for ten frames, chosen in the absence of evident perturbations. The interface
between inner and outer currents is not sharp, and a film separating the two fluids is evident
in the shots; measurements were taken considering (i) the interface between film and inner
current, and (ii) the interface between film and outer current.

The average ascent speed of the internal lighter current was measured by image analysis
taken from an iPhone at 30 f.p.s., allowing estimation at different times of the position of
the upwelling front with respect to an external rule with spacing of 1 mm.

The experiments were conducted by first filling the bottom half of the tube with the
lighter fluid, closing the gate and then filling the top half of the tube with the heavier fluid.
When the gate is opened, the upward current, the innermost one for all the tests carried
out, starts to advance.

Figure 19 shows three snapshots of the elongated drop of water in glycerol.
For some tests, a velocity profiler (UVP) DOP 5000 by Signal Processing SA,

Switzerland, was used, with an 8 MHz carrier frequency probe inclined at 75◦ to
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Figure 20. Velocity profiles measured with ultrasonic profiler, average values over approximately 20 s.
(a) Ascending Newtonian fluid, n = 1, R = 0.80, M = 640, Ar = 1.88; (b) ascending shear-thinning fluid,
n = 0.55, R = 0.83, M = 5.7, Ar = 2.63. (c) Water stream in laminar viscous regime. The blue bold curves
are the theoretical values, the red dashed curves are the theoretical values averaged in a volume equal to the
volume of measurement of the gates of the velocity profiler, symbols are the experimental values, error bars
refer to one standard deviation and are representative of the variability of the sample of the velocity profiles.
The interface (r = δ) is located at the intersection between the two branches of ascending and descending fluid
velocity (the velocity shows a cusp), based on theoretical profiles (blue continuous curves).

the vertical. The fluid was seeded with TiO2 particles, showing a high sonic impedance, so
that the probe could measure their velocity at different distances (gates) along the axis of
the ultrasonic cone on the basis of the Doppler shift of the echoes. Doppler shift and gate
position depends on the speed of sound, which varies as a function of the temperature and
of the density of the fluid. A correction to the gate position and velocity was made in order
to compensate for the different velocities of the Ultrasounds in the inner and outer currents
(see Petrolo & Longo 2020). The space resolution was 0.3 mm, the data rate was ≈ 5
profiles per second, so that the overall accuracy in fluid velocity measurement is ≤ 4 %.
Figure 20 shows two velocity profiles for tests with a Newtonian and a shear-thinning
ascending fluid, respectively, and a third test with a stream of water with known flow
rate in order to compare measurements with the theoretical parabolic velocity profile. The
overall accuracy is fairly good, although the finite size of the volume of measurement of
the UVP smooths the velocity. An improved agreement between experiments and theory
is obtained by considering the space average of the theoretical velocity over the thickness
of the volume of measurements (dashed curves). In a first attempt, we used the UVP data
to estimate the zero-crossing distance of the velocity profile, related to the radius of the
internal current. However, the limited spatial resolution of the instrument did not guarantee
adequate accuracy, hence we decided to measure the radius optically with the webcam
microscope.

6.3. The uncertainty in variables and parameters
The density of the fluids was measured with an accuracy of 1 kg m−3, resulting in Δρ/ρ ≤
0.1 % and Δ(Δρ)/Δρ ≤ 0.2 %.

The rheological parameters were estimated with a relative uncertainty equal to
Δn/n ≤ 3 % for the fluid behaviour index, to Δμ0/μ0 ≤ 7 % for the consistency
index, to Δτy/τy ≤ 8 % for the yield stress and to Δμd/μd ≤ 2 % for the viscosity
of the Newtonian ascending fluid. The uncertainty was Δα/α ≤ 4 % for the
indicial parameter, Δη0/η0 ≤ 5 % for the asymptotic viscosity and Δτ0/τ0 ≤ 8 %
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for the half-viscosity shear stress in the Ellis model. The radius of the pipe
was known with a relative uncertainty ΔR/R < 2 %. The resulting uncertainties
for the parameters are ΔR/R ≤ 0.2 %, ΔAr/Ar ≤ 7 %, ΔRe/Re ≤ 4 %, ΔM/M ≤
7 %, ΔBm/Bm ≤ 10 %, ΔM′/M′ ≤ 5 % and Δβ/β ≤ 12 %.

The accuracy in measuring the front position of the ascending long drop is limited by
refraction and parallax error, and can be assumed to be ≈ 1 mm while the time error is
half the time interval between two frames, ≈ 1/60 s; the uncertainty in the speed value is
mainly associated with the variability of the motion of the drop and can be assumed to be
ΔUa/Ua ≤ 2 %.

The radius of the internal current was detected with a relative accuracy Δδ/δ ≤ 5 % and
the velocity measurements with UVP had an overall uncertainty Δv/v ≤ 4 % (see Longo
et al. 2012).

6.4. The results of the experiments
A series of 12 experiments were carried out, 5 with Newtonian (2 with air), 3 with
shear-thinning and 4 with yield shear-thinning fluids constituting the inner ascending
current. The outer descending fluid was always Newtonian, glycerol or honey. The
experiments were not repeated and a single realization for each set of fluids properties
is documented and discussed. The main parameters of the experiments are listed in
table 1, where the OdW model is used for the shear-thinning ascending fluid without yield
stress (experiments 1–8). Table 2 lists the parameters for experiments 1–8 with the inner
ascending fluid modelled with the Ellis rheology. Measurements with both ascending and
descending Newtonian fluid currents are already available in the literature, see Stevenson
& Blake (1998) and Goldsmith & Mason (1962); this choice was initially adopted in
the present apparatus in order to verify its correct functioning, as well as to extend the
database.

A clear rationale for the appropriateness of the Ellis model instead of the OdW model
is evident in figure 21(a), which shows the experimental rheometric measurements for the
shear-thinning fluid adopted in experiment 6, see table 2, with data interpolated with the
Ellis and the OdW models. The Ellis model better interprets the low shear-rate data, and
this affect the velocity profile mainly near the axis, where the shear rate is at a minimum.
At high shear rate, the two models are almost coincident.

Figure 21(b) shows the rheometric data for the HB fluid in experiment 12, where the
continuous curve has been obtained by interpolating the experimental points. The flow
curves for the HB fluids adopted in experiments 9–11 are shown in Appendix C. Note that
the determination of rheometric parameters for HB fluids can be based on different criteria,
see Di Federico et al. (2017) where some of the most frequently adopted techniques are
compared in the appendix. In the present study, we have adopted the simplest procedure,
which involves a relatively high uncertainty. A more detailed analysis would also have
required checking for the existence of slip phenomena, which lead to an underestimation
of the measured parameters. We leave this analysis to further developments of both the
adopted model and the rheometric measurements. To some extent, the high uncertainty in
parameter estimation also includes some deliberately neglected phenomena.

The experiments cover a wide range of viscosity contrast M = O(1) − O(106) always
with a stable ascending current, while the density ratio R ≈ 0.8, except for two tests where
the density ratio is much smaller. The Reynolds number is Re = O(0.1), the Archimedes
number is Ar = O(1), the modified Bingham number for HB fluids, when non-zero, is
Bm = O(0.1) and the ratio between buoyancy and the typical shear stress of an Ellis
fluid is β = O(1)–O(104). Note that experiments with even higher Bm values showed
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Figure 21. Rheometric measurements (a) for the shear-thinning fluid in experiment 6, see tables 1 and 2. The
Ellis model (bold curves) and the OdW model (dashed curves) are used to interpolate the experimental data
τ − γ̇ (crosses), and η − γ̇ (open squares). (b) For the HB fluid in experiment 12. Data have been decimated for
clearer visualization. The grey symbols refer to experimental points not included in the interpolation process
due to their limited accuracy.

clear instabilities, with a rising current fragmented into numerous discontinuous plugs.
The maximum and minimum values of the Richardson number Ri in the experiments are
Rimax ≈ 840/ε and Rimin ∼= 4.14/ε, and in general if Ri is requested to be larger than a
lower threshold Ri0 (say, Ri0 = 100) this is equivalent to requiring that the drop ascent
develops for a time larger than a given time, i.e. t > t0 = [(1 − R)R Ar Ri0]/(Ua − Ud).
In these experiments one has t0min = 0.3 s and t0max = 24 s, corresponding to a value of
L < 17 cm; only in experiment 4 does the value of L exceed the length of the tube, with
the long drop characterized by Ri < Ri0.

Figure 22 compares the ascent speed for the lock-exchange configuration of the present
experiments with our theoretical results for the HB model. The curves refer to the
theoretical asymptotic radius δ3∞ and to the maximum flow rate. The agreement between
the experimental data and the theoretical model is generally good, with most of the values
thickening around the curves for δ3∞, except for the experiments with a yield-stress
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Figure 22. Ascent speed Ua as a function of M for the experiments listed in table 1. Curves refer to the
ascent speed corresponding to the asymptotic core radius δ3∞, symbols are the experiments, with empty circles
representing the value if the internal ascending fluid is air; dashed thick curves refer to a HB fluid with large
Bingham number (not in the experiments). The descending external fluid is Newtonian. Error bars (almost the
same size as the symbols) indicate two standard deviations.
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Figure 23. Ascent speed Ua as a function of M′ for the experiments listed in table 2. Curves refer to the
ascent speed corresponding to the asymptotic core radius δ3∞, symbols are the experiments, with empty circles
representing the value if the internal ascending fluid is air. The descending external fluid is Newtonian. Error
bars (almost the same size as the symbols) indicate two standard deviations.

ascending fluid. The approximations are better at low M, and also adequately reproduce
the curve knee for M < 10. Figure 23 compares the experimental ascent speed with theory
based on the Ellis model, doing so only for experiments without yield stress. Again, the
experimental agreement is fairly good and better than the case of the same experiments
with a fluid described by the OdW model, especially for low values of M′.

Figure 24 compares the experimental radius of the ascending internal current with the
theoretical value δ3∞ for the dissipative and non-dissipative cases: also for this quantity,
the agreement is good, with a maximum deviation ≤ 10 %.

In some experiments a bubble was present from the beginning on the wavefront of the
ascending current, and was sometimes able to distort the geometry of the front to an
appreciable extent (see, for example, the video for experiment 12 in the supplementary
material available at https://doi.org/10.1017/jfm.2022.676). However, the bubble had no
effect on the speed (different from the case where the bubble was injected in a subsequent
phase because, in this second configuration, the bubble was able to perturb the current, see
the analysis of bistability in § 7).
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Figure 24. Drop radius in the stable node state δ3∞ as a function of M. The horizontal curves refer to
the non-dissipative regime with R = 1 and to the dissipative regime with R = 0.8, symbols refer to the
experiments, with empty circles for the experiments with air as internal ascending fluid. Error bars indicate
two standard deviations.

These data confirm, even for non-Newtonian fluids such as those used in the present
experiments, that the stationarity condition and the corresponding radius of the rising inner
current do not coincide with the maximum value of the flow rate; instead, they approximate
the value δ3∞. The discrepancies between theory and experiments can be attributed both
to measurement uncertainties and to effects unaccounted for by the theoretical model,
first and foremost the miscibility of the two currents, which tends to modify the velocity
profiles and all related variables. It should be noted that the progressive growth of a
coaxial boundary layer of fluid, having characteristics intermediate between the inner
and outer fluids, involves first of all a reduction of the buoyancy; it then entails a more
or less significant variation of the rheological parameters. Further, the boundary layer is
presumably non-homogeneous in the direction of motion, with a minimum thickness near
the front of the inner current and a progressive growth towards the tail.

7. Observed bistability

It is noteworthy that core-annular flow in vertical tubes is inherently bistable, as
documented by direct numerical simulations (see Suckale et al. 2018): there exist two
distinct values of the radius of the internal current that are both stable (at least to
perturbations of infinitesimal amplitude). The bistability leads to two distinct regimes,
one with thin-core current and the other with thick-core current, straddling the maximum
of the flow rate curve.

In some experiments, transitions from one flow regime to another were observed,
triggered by disturbances such as small air bubbles leading up to the inner current.
Figure 25 shows the experimental front position for two Newtonian experiments in
similar conditions. In both cases, the initial thick current suddenly reduces its radius
with a corresponding increase in speed. Figure 25(b) also shows a return to the initial
thick condition after a segment in the thin configuration. In both cases, the thick radius
corresponds to δ3∞ = 0.632 and the thin radius is still in the thick branch of the transport
parameter curve, see figure 26 depicting the transport parameter and the dissipation
function for the two fluids. The bistability observed in these experiments appears to be
different from that documented, for example, by Suckale et al. (2018), since the transition
occurs between two configurations, both of which have a core radius greater than the
radius at which the maximum flux corresponds. It appears evident that, in addition to
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Figure 25. Front position for two experiments with Newtonian ascending and descending fluids, where
bistability occurs. Blue dots are the experimental results, the solid curves are the linear interpolation.

the effects of the boundary conditions invoked by Suckale et al. (2018), also the presence
of perturbations of finite amplitude of various nature can favour the transition between
two apparently stable regimes. In particular, a metastability is evident in the experiment
illustrated in panel (b) of figures 25 and 26, in which the disappearance of the air bubble at
the top leads to a return to the starting configuration. This means that the predictability of
the flow regime is even more impaired: not only is the principle of maximum dissipation
invalid, which would lead to a current of maximum flow, but also bistability does not seem
to be preferentially associated with the boundary conditions. Further direct or numerical
experiments, accompanied perhaps by a more refined theoretical approach, are needed to
discriminate between the different contributions to the onset of bistability.

8. Conclusion

We have studied theoretically and experimentally the behaviour of gravity currents in
cylindrical circular pipes aligned vertically, performing experiments in the lock-exchange
configuration at relatively low Reynolds number. The peculiarity of the model and
experiments, compared with what is offered in the literature, is that the ascending current
is a non-Newtonian shear-thinning fluid, and can exhibit a yield stress; the descending
current is Newtonian. Two rheological models were used: (i) the HB model (OdW if the
yield stress is zero), and (ii) the Ellis model (only for fluids without yield stress). The
dynamics of the currents, the flow rates and the level of dissipation depend on the radius of
the ascending internal current. When present, the role of the yield stress is relatively minor
for a Bingham number of order 0.1, while it becomes significant for Bingham numbers of
order 1.

The radius of equilibrium was determined on the basis of the energy balance, obtaining
an asymptotic value essentially from the transformation of potential into kinetic energy
and subsequent dissipation. The accumulated kinetic energy is negligible with respect
to the other two terms, provided that the Richardson number is sufficiently high
(Ri = 9 · 102−1.8 · 105 in our experiments). This results in an asymptotic radius δ3∞ that
depends only on the density ratio R, without being influenced by the rheology of the
ascending fluid. In fact, the evolution equation of the radius of the ascending internal
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Figure 26. Transport parameter Te and dissipation functions for two Newtonian experiments where bistability
occurs, see figure 25, (a) with transition from A to B, and (b) with transition from A to B and vice versa. The
bold curve is the transport parameter (coincident with the flow rate and with the total dissipation), the dashed
and dot-dashed curves show the dissipation in the descending and ascending fluid, respectively. The arrows
indicate the direction of the transition.

current admits 3 stable nodes (2 of which have no physical meaning) and includes the
derivative of the logarithm of the flow rate (also called the transport number), without
involving for the values at the stable nodes the dimensionless groups that parameterize the
fluid rheology.

If the contrast between the viscosities of the descending and ascending fluids is
very high, the asymptotic solution is independent of most parameters, including those
characterizing the fluid rheology, and the transport parameter tends, for a radius of
the ascending current equal to δ3∞, to Te = 0.038 while neglecting dissipation. The
proposed models have been experimentally verified by first calibrating the system, with
a Newtonian fluid, and then employing shear-thinning fluids with and without yield stress.
The comparison of theory with measurement of the front velocity and radius of the
ascending current gave good results within the limits of experimental accuracy. A more
detailed comparison was carried out on the velocity profiles, measured with an ultrasonic
profilometer, again with fairly good results.

The cause of the deviations between experiments and model lies, for the present set of
experiments, in the fact that the fluids are not immiscible: this leads to a radial change
of buoyancy and of rheological parameters, see the analysis in Suckale et al. (2018)
where it is stated that a small amount of miscibility can alter the velocity profile and
blunt the shear rate at the interface. In this respect, experiments have shown that the
miscibility between the two fluids is not as relevant if the degree of miscibility is not
as high, as related to stability (see e.g. Scoffoni, Lajeunesse & Homsy 2001), and linear
stability analysis has shown that miscibility can stabilize the flow (see e.g. Meiburg et al.
2004). Note that solubility and miscibility (two thermodynamic properties), are strongly
correlated to interfacial tension (see Ayirala & Dandina 2006), and their correct scaling
in physical models is a daunting task. Another important aspect is the adequacy of the
present model in describing processes such as the convective motion of magma in volcanic
conduits. Apart from the geometry of volcanic conduits, which are much less regular
than the geometry of our experimental pipe, we expect major deviations essentially due
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to the non-homogeneity of the process at full scale: magma during ascent is subject to
degassing, which involves changes in density and especially in rheological behaviour, since
gas bubbles normally induce shear-thinning behaviour. In addition, degassing leads to an
increase in the percentage of crystallization, which in turn leads to a substantial increase
in viscosity.

Dynamic similarity conditions indicate that full similarity is, in fact, quite difficult, since
often insurmountable limitations arise when fixing fluid physical parameters, especially
rheological ones; approximate similarity must be accepted, and scale effects analysed.
These limitations are overcome if the viscosity contrast (M or M′) is sufficiently large:
in this case, the only similarity conditions are that the parameter R must assume the same
value in the model and in the prototype.

The model can be improved by modelling mixing at the interface between the two fluids,
resulting in changes in buoyancy and apparent viscosity. A further extension is to consider
(i) degassing with an increase in the volume of gas bubbles; (ii) thermal exchange. In both
cases, we expect a change in rheological parameters and buoyancy. In addition, because
the system is characterized by metastability, linear followed by nonlinear stability analysis
is of interest to explore what appear to be multiple solutions.

Some preliminary experiments have shown that a high Bm value facilitates the
development of instability, with the HB fluid core fragmenting and advancing in
discontinuous blocks rather than as a uniform current. This is a topic of particular interest
that will require future investigation, both theoretical and experimental, by conducting
a linear and nonlinear stability analysis in order to estimate the critical values of the
parameters that determine the amplification of the perturbations. From an experimental
point of view, the verification of the stability boundary conditions will require greater
accuracy in the construction and dimensional characteristics of the pipe, not to mention a
greater length to allow instabilities, if present, to appear and develop.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.676.
Three videos show the elongated drop flow for experiment 2 (Newtonian descending/Newtonian ascending),
experiment 6 (Newtonian/shear thinning) and experiment 12 (Newtonian/shear thinning plus yield stress).
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Appendix A. The equations for the ascending and descending fluid

The strain-rate tensor D in cylindrical coordinates is given by

D = 1
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where (u, v, w) ≡ v is the velocity vector with components in the vertical, radial and
azimuthal directions, respectively.

In cylindrical coordinates, the continuity equation (2.3) is
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∂θ

+ ∂τzθ

∂z
+ 1

r2
∂

∂r
(r2τrθ ) + 1

r
∂τθθ

∂θ
+ ρbθ .
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(A3)

Assuming that the azimuthal velocity w is zero and that the flow field is independent of
θ , the strain-rate tensor simplifies as

D = 1
2

⎛⎜⎜⎜⎜⎜⎝
2

∂u
∂z

∂u
∂r

+ ∂v

∂z
0

∂v

∂z
+ ∂u

∂r
2

∂v

∂r
0

0 0 2
v

r

⎞⎟⎟⎟⎟⎟⎠
zrθ

, (A4)

with a measure of shear equal to

|γ̇ | =
√

2
(

∂u
∂z

)2

+ 2
(

∂v

∂r

)2

+ 2
(v

r

)2 +
(

∂u
∂r

+ ∂v

∂z

)2

. (A5)
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Equations (A2) and (A3) simplify as

∂u
∂z

+ ∂v

∂r
+ v

r
= 0, (A6)

and

ρ

(
∂u
∂t

+ u
∂u
∂z

+ v
∂u
∂r

)

= −∂p
∂z

+ ∂τzz

∂z
+ 1

r
∂

∂r
(rτrz) + ρbz,

ρ

(
∂v

∂t
+ u

∂v

∂z
+ v

∂v

∂r

)

= −∂p
∂r

+ ∂τzr

∂z
+ 1

r
∂

∂r
(rτrr) − τθθ

r
+ ρbr.
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(A7)

Equations (A7) need to be specialized for the two fluids. For the descending Newtonian
fluid they read

ρd

(
∂ud

∂t
+ ud

∂ud

∂z
+ vd

∂ud

∂r

)

= −∂pd

∂z
+ μd

∂2ud

∂z2 + μd

r
∂

∂r

(
r
∂ud

∂r

)
− ρdg,

ρd

(
∂vd

∂t
+ ud

∂vd

∂z
+ vd

∂vd

∂r

)

= −∂pd

∂r
+ μd

∂2vd

∂z2 + μd

r
∂

∂r

(
r
∂vd

∂r

)
− μd

vd

r2 .
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(A8)

For the ascending HB fluid the measure of the shear is

|γ̇ | =
√√√√2

(
∂ua

∂z

)2

+ 2

[(
∂va

∂r

)2

+
(va

r

)2 + ∂va

∂z
∂ua

∂r

]
+

(
∂ua

∂r

)2

+
(

∂va

∂z

)2

, (A9)
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and if |τ | > τy, (A.7) for the vertical and radial components become

ρa

(
∂ua

∂t
+ ua

∂ua

∂z
+ va

∂ua

∂r

)
= −∂pa

∂z
− ρag

+ 2μ0
∂

∂z

(
|γ̇ |n−1 ∂ua

∂z

)
+ 2τy

∂

∂z

(
1

|γ̇ |
∂ua

∂z

)

+ μ0

r
∂

∂r

(
r |γ̇ |n−1 ∂ua

∂r

)
+ τy

r
∂

∂r

(
r

|γ̇ |
∂ua

∂r

)

+ μ0

r
∂

∂r

(
r |γ̇ |n−1 ∂va

∂z

)
+ τy

r
∂

∂r

(
r

|γ̇ |
∂va

∂z

)
,

ρa

(
∂va

∂t
+ ua

∂va

∂z
+ va

∂va

∂r

)
= −∂pa

∂r

+ μ0
∂

∂z

(
|γ̇ |n−1 ∂ua

∂r

)
+ τy

∂

∂z

(
1

|γ̇ |
∂ua

∂r

)

+ μ0
∂

∂z

(
|γ̇ |n−1 ∂va

∂z

)
+ τy

∂

∂z

(
1

|γ̇ |
∂va

∂z

)

+ 2μ0

r
∂

∂r

(
r|γ̇ |n−1 ∂va

∂r

)
+ 2τy

r
∂

∂r

(
r

|γ̇ |
∂va

∂r

)
− 2μ0|γ̇ |n−1 va

r2 − 2
τy

|γ̇ |
va

r2 .
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(A10)

Turning now to dimensionless form, the equations for the descending Newtonian fluid
read

εAr
(

∂ ũd

∂ t̃
+ ũd

∂ ũd

∂ z̃
+ ṽd

∂ ũd

∂ r̃

)

= −∂ p̃d

∂ z̃
+ ε2 ∂2ũd

∂ z̃2 + 1
r̃

∂

∂ r̃

(
r̃
∂ ũd

∂ r̃

)
− 1

1 − R ,

ε3Ar
(

∂ṽd

∂ t̃
+ ũd

∂ṽd

∂ z̃
+ ṽd

∂ṽd

∂ r̃

)

= −∂ p̃d

∂ r̃
+ ε4 ∂2ṽd

∂ z̃2 + ε2 1
r̃

∂

∂ r̃

(
r̃
∂ṽd

∂ r̃

)
− ε2 ṽd

r̃2 ,
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(A11)

where R ≡ ρa/ρd < 1 is the density ratio, Ar = ρdΔρ gR3/μ2
d is the Archimedes number

and ε = R/L the aforementioned pipe aspect ratio.
Recalling that ε � 1, at O(1), (A11) reduce to

1
r̃

∂

∂ r̃

(
r̃
∂ ũd

∂ r̃

)
= ∂ p̃d

∂ z̃
+ 1

1 − R , r̃ ∈ [δ̃, 1],

∂ p̃d

∂ r̃
= 0.

⎫⎪⎪⎬⎪⎪⎭ (A12)
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For the ascending HB fluid, we first need to scale the measure of the shear, which results
in

|̃γ̇ | =
√√√√2ε2

[(
∂ ũa

∂ z̃

)2

+
(

∂ṽa

∂ r̃

)2

+
(

ṽa

r̃

)2

+ ∂ṽa

∂ z̃
∂ ũa

∂ r̃

]
+ ε4

(
∂ṽa

∂ z̃

)2

+
(

∂ ũa

∂ r̃

)2

.

(A13)
The dimensionless form of the equations for the ascending fluid for |τ | > τy is then

εRAr
(

∂ ũa

∂ t̃
+ ũa

∂ ũa

∂ z̃
+ ṽa

∂ ũa

∂ r̃

)
= −∂ p̃a

∂ z̃
− R

1 − R

+ 2ε2 1
M

∂

∂ z̃

(
| ˜̇γ |n−1 ∂ ũa

∂ z̃

)
+ 2ε2 Bm

M
∂

∂ z̃

(
1

| ˜̇γ |
∂ ũa

∂ z̃

)

+ 1
M

1
r̃

∂

∂ r̃

(
r̃| ˜̇γ |n−1 ∂ ũa

∂ r̃

)
+ Bm

M
1
r̃

∂

∂ r̃

(
r̃

| ˜̇γ |
∂ ũa

∂ r̃

)

+ ε2 1
M

∂

∂ r̃

(
r̃| ˜̇γ |n−1 ∂ṽa

∂ z̃

)
+ ε2 Bm

M
∂

∂ r̃

(
r̃

| ˜̇γ |
∂ṽa

∂ z̃

)
,

ε3RAr
(

∂ṽa

∂ t̃
+ ũa

∂ṽa

∂ z̃
+ ṽa

∂ṽa

∂ r̃

)
= −∂ p̃a

∂ r̃

+ ε2 1
M

∂

∂ z̃

(
| ˜̇γ |n−1 ∂ ũa

∂ r̃

)
+ ε2 Bm

M
∂

∂ z̃

(
1

| ˜̇γ |
∂ ũa

∂ r̃

)

+ ε4 1
M

∂

∂ z̃

(
| ˜̇γ |n−1 ∂ṽa

∂ z̃

)
+ ε4 Bm

M
∂

∂ z̃

(
1

| ˜̇γ |
∂ṽa

∂ z̃

)

+ 2ε2 1
M

1
r̃

∂

∂ r̃

(
r̃| ˜̇γ |n−1 ∂ṽa

∂ r̃

)
+ 2ε2 Bm

M
1
r̃

∂

∂ r̃

(
r̃

| ˜̇γ |
∂ṽa

∂ r̃

)

− 2ε2 1
M | ˜̇γ |n−1 ṽa

r̃2 − 2ε2 Bm
M

1

| ˜̇γ |
ṽa

r̃2 ,
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(A14)

where

M = μd

μ0(U/R)n−1 ≡ μd

μ0

(
ΔρgR

μd

)1−n

(A15)

is the ratio between the scales of the viscous Newtonian and power-law stresses, and

Bm = τy

μ0(U/R)n (A16)

is a modified Bingham number for HB fluids.

0 A1-39



S. Longo and others

Recalling again that ε � 1, at O(1) (A13) reduces to

| ˜̇γ | =
∣∣∣∣∂ ũa

∂ r̃

∣∣∣∣ , (A17)

with an apparent viscosity of the ascending fluid equal to

η = μ0|γ̇ |n−1 + τy

|γ̇ | = μ0

(
U
R

)n−1 ∣∣∣∣∂ ũa

∂ r̃

∣∣∣∣n−1

+ τy

U
R

∣∣∣∣∂ ũa

∂ r̃

∣∣∣∣ , (A18)

and (A14) reduce to

1
M

1
r̃

∂

∂ r̃

(
r̃

∣∣∣∣∂ ũa

∂ r̃

∣∣∣∣n−1
∂ ũa

∂ r̃

)

+ sgn
(

∂ ũa

∂ r̃

)
Bm
M

1
r̃

= ∂ p̃a

∂ z̃
+ R

1 − R ,

if |τrz| > τy, r̃ ∈ [0, δ̃],

ũa = const., if |τrz| ≤ τy, r̃ ∈ [0, δ̃],

∂ p̃a

∂ r̃
= 0.
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(A19)

Appendix B. Scaling rules for dynamic similarity

The similarity relations for the physical process we are analysing can be inferred by
imposing the equality of the dimensionless groups sufficient to define the problem, in
the model and in the prototype (see Longo 2022), that is, for a HB ascending fluid

rM = 1, rBm = 1 → Mm = Mp, Bmm = Bmp, (B1)

where the subscripts stand for ‘model’ (the process in the laboratory) and ‘prototype’ (the
real process) and where r(··· ) is the ratio between the values of the variable in the model
and in the prototype.

The equality of the two dimensionless parameters results in

r1−n
Δρ λ1−n = rμ0r−n

μd
,

rτy = rμ0r−n
μd

rn
Δρλn,

}
(B2)

where traditionally λ is the ratio of lengths. Equations (B2) implicitly assume that rg =
rn = 1, since the experiments are conducted under the same gravitational acceleration
acting in reality; the equality of the fluid behaviour index of the ascending HB fluid is
mandatory. There are five unknowns and two equations, hence three degrees of freedom
are left: we fix, for instance, rμ0 , rμd , rΔρ and can estimate

rτy =
(

rμ0

rn
μd

)1/(1−n)

,

λ = 1
rΔρ

(
rμ0

rn
μd

)1/(1−n)

,

if n /= 1,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B3)
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and
rτy = rμ0 = rμd ,

λ = rμ0

rΔρ

,
if n = 1.

⎫⎬⎭ (B4)

It would be more advantageous to select rμ0, rμd , rτy , since it is very difficult and
usually impossible to synthesize fluids with predefined rheological characteristics, but
unfortunately the system in (B3) would not admit solutions. The other variables are scaled
according to their definition; for the velocity this results in

U ∼ ΔρgR2

μd
→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rU = r2/(1−n)

μ0

rΔρr(n+1)/(1−n)
μd

, if n /= 1,

rU = rμ0

rΔρ

= λ, if n = 1.

(B5)

The time scaling is

t ∼ L
U

→

⎧⎪⎨⎪⎩rt = k
(

rμd

rμ0

)1/(1−n)

, if n /= 1,

rt = k, if n = 1,
(B6)

where k = λz/λ is the distortion ratio and λz is the vertical length scale. We emphasize that
time scaling refers to the vertical scale L (the process is stationary in the radial direction),
which in the theoretical model is always assumed to be much larger than the horizontal
(radial) scale. In this sense, in the model we are free to choose a vertical geometric scale
different from the horizontal one.

The flow rate scaling is

Q ∼ ΔρgR2

μd
δ2 →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
rQ = r4/(1−n)

μ0

r3
Δρr(3n+1)/(1−n)

μd

, if n /= 1,

rQ = r3
μ0

r3
Δρ

, if n = 1.

(B7)

The Archimedes number scales as

rAr = rρd

r2
Δρ

(
r3
μ0

rn+2
μd

)1/(1−n)

, if n /= 1,

rAr = rμ0rρd

r2
Δρ

, if n = 1,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (B8)

and the Reynolds number scales as

rRe = r1/2
ρd r1/2

Δρ λ3/2

rμd

. (B9)

It is important to verify that the Reynolds number is small enough in the model and in the
prototype to guarantee a viscosity-controlled regime of the currents.
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Figure 27. Flow curves for the HB fluids, (a) for experiment 9, with τy = 0.15 Pa, n = 0.50, μ0 = 0.92 Pa sn;
(b) for experiment 10, with τy = 0.16 Pa, n = 0.56, μ0 = 1.06 Pa sn; (c) for experiment 11, with
τy = 0.05 Pa, n = 0.67, μ0 = 0.50 Pa sn. The grey bullets are experimental points not included in the
interpolation process due to their limited accuracy. The experimental data have been decimated for a clearer
visualization.
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If the ascending fluid is modelled as an Ellis fluid, the similarity condition requires that
rM′ = 1, rβ = 1 and rα = 1, equivalent to

λ = rτ0

rΔρ

,

rμd = rη0,

⎫⎬⎭ (B10)

with three degrees of freedom; for instance, we can fix rτ0, rΔρ, rμd and calculate λ and
rη0 . The velocity scaling is

rU = r2
τ0

rΔρrμd

, (B11)

the time scaling is

rt = k
rμd

rτ0

(B12)

and the flow rate scaling is

rQ = r4
τ0

r3
Δρrμd

. (B13)

From the Ellis model definition, applying the principle of dimensional homogeneity yields
rτ = rτ0 and rt = krμd/rτ0 .

The Archimedes number scales as

rAr = rρd

r2
μd

r3
τ0

r2
Δρ

, (B14)

and the Reynolds number as

rRe = r1/2
ρd r3/2

τ0

rμd rΔρ

. (B15)

For M > 150(M′ > 50) the dimensionless groups M(or M′) and Bm(or β) are
irrelevant since the asymptotic ascent speed is reached, hence similarity requires only that
rR = 1 → rρd = rρa , with rUa = rΔρλ2/rμd ; the scales can be selected at will, providing
that the Reynolds number is small enough both in the model and in the prototype.

Appendix C. Flow curves for the HB fluids used in the experiments

The following figure 27 depicts the flow curves for the HB fluids in experiments 9–11.
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